Searches for New Physics In Charm and Bottom Decays at the Tevatron

Sabato Leo

University and INFN - Pisa

On behalf of the CDF and D0 collaborations

Rencontres de Moriond QCD and High Energy Interactions La Thuile, Aosta valley, Italy

Flavor physics at the Tevatron

- lacksquare Shut down on Sep 30, 2011 after 10 years of 2TeV $par{p}$ collisions
- ☐ CDF and D0 have about 10 fb⁻¹ of data on tape each
- \square Designed for high- p_T physics but:
 - ✓ High-rate of all species of heavy flavors actually higher than "B factories" (CDF + D0)
 - ✓ Excellent mass resolution (CDF)
 - ✓ Precision vertex reconstruction capabilities (CDF + D0)
 - ✓ Powerful trigger on displaced vertices (CDF)
 - ✓ Charge-symmetric detector (D0)

Current HF activity

- ☐ Producing final results using the full 10/fb sample
 - ✓ CP violation in charmless B decays (CDF)
 - ✓ Br and asymmetries in rare decays (CDF/D0) Talk
 ✓ CP violation in Dalas 15
 - ✓ CP violation in Bd and Bs semi-leptonic decays (D0)
 - ✓ Spectroscopy (CDF)
 - ✓ Production and Quarkonium
- ☐ Detailed papers on flagship analyses

b→s μ⁺μ⁻ decays

- ☐ Another flavor-changing-neutral-current golden probe
- ☐ 3-body decay provides many observables sensitive to NP
 - ✓ Total/differential BR, isospin asymmetry, forwardbackward asymmetry....
- ☐ Rich CDF program:
 - ✓ asymmetries more precise than B factories and 1st observation of Λ_h^0 and B_s $b \to s \mu^+ \mu^-$ decays.

b→s μ⁺μ⁻ decays

$$\Box B^{+} \to K^{+}\mu^{+}\mu^{-},$$

$$B^{0} \to K^{*0}(892)\mu^{+}\mu^{-},$$

$$B^{0} \to K_{S}^{0}\mu^{+}\mu^{-},$$

$$B^{+} \to K^{*+}(892)\mu^{+}\mu^{-},$$

$$B_{S}^{0} \to \varphi\mu^{+}\mu^{-},$$

$$\Lambda_{b}^{0} \to \Lambda\mu^{+}\mu^{-}$$

- ☐ Di-muon trigger
- \square NN maximizes BR and A_{FR} significance
- ☐ Fit Mass for signal yields

Candidates

Isospin and FB asymmetry

 $= -0.29 \pm 0.28(stat) \pm 0.06(syst)$

Consistent with SM

BR of $B_S \rightarrow \mu^+ \mu^-$

- □ Flavor-changing-neutral current, helicity-suppressed, and well predicted rate, $BR(B_s^0 \to \mu^+\mu^-) \sim 3 \cdot 10^{-9}$:
 - ✓ sensitive to a broad class of NP models
- ☐ Tevatron flagship:
 - ✓ upper limits improved by three orders of magnitude over the last 15 years.
 - ✓ Plethora of NP models excluded or tightly constrained

BR of $B_s \rightarrow \mu^+ \mu^-$

- \square Normalization mode $B^{\pm} \rightarrow J/\psi K^{\pm}$ Events / 25 MeV
- BDT
 - ✓ Use data sidebands as background
- ☐ Blinded analysis
- ☐ Expected
 - ✓ SM Signal: 1.23 ± 0.13
 - ✓ Background: 4.0 ± 1.5
 - ✓ Limit: BR($B_S \to \mu^+ \mu^-$) = 23 · 10⁻⁹
- ☐ Observed 3 events:

$$BR(B_s^0 \to \mu^+ \mu^-) < 15 \times 10^{-9}$$

PRD Accepted, arxiv:1301.4507

CDF result:BR $< 3.1 \cdot 10^{-8}$, PRD Accepted arXiv:1301.7048 12/03/2013 Sabato Leo

The Big Picture

Sandidates per 10 MeV/ c^2

CPV in charmless B

CDF Run II Preliminary $\int L dt = 9.30 \text{ fb}^{-1}$

Several decays reconstructed in single narrow peak

☐ Fit events and correct for detector induced charged asymmetries using $D^0 \rightarrow K^+\pi^-$

$$\frac{1}{5.8} \frac{\mathcal{B}(b \to f) - \mathcal{B}(\bar{b} \to \bar{f})}{\mathcal{B}(b \to f) + \mathcal{B}(\bar{b} \to \bar{f})} = \frac{N_{b \to f} - c_f N_{\bar{b} \to \bar{f}}}{N_{b \to f} + c_f N_{\bar{b} \to \bar{f}}}$$

Results

Fit

Mode	$\mathcal{N}_{b o f}$	$\mathcal{N}_{ar{b} oar{f}}$
$B^0 o K^+\pi^-$		5313 ± 109
$B_s^0 o K^-\pi^+$	354 ± 46	560 ± 51
$\Lambda_b^0 o p\pi^-$	242 ± 24	206 ± 23
$\Lambda_b^0 o p K^-$	271 ± 30	324 ± 31

$$A_{CP}(B^{o} \rightarrow K^{+}\pi^{-}) = (-8.3 \pm 1.3 \pm 0.3)\%$$

$$A_{CP}(B_{s}^{o} \rightarrow K^{-}\pi^{+}) = (22 \pm 7 \pm 2)\%$$

$$A_{CP}(\Lambda_{b}^{o} \rightarrow p\pi^{-}) = (7 \pm 7 \pm 3)\%$$

$$A_{CP}(\Lambda_{b}^{o} \rightarrow pK^{-}) = (-9 \pm 8 \pm 4)\%$$

Consistent with zero.
However the limited experimental precision does not allow a conclusive discrimination between SM prediction (~8%)

Measurement of b-baryon asymmetries still unique to CDF

CPV in B_s mixing

$$a_{\rm sl}^s = \frac{\Gamma(\bar{B}_s^0 \to B_s^0 \to \ell^+ \nu X) - \Gamma(B_s^0 \to \bar{B}_s^0 \to \ell^- \bar{\nu} \bar{X})}{\Gamma(\bar{B}_s^0 \to B_s^0 \to \ell^+ \nu X) + \Gamma(B_s^0 \to \bar{B}_s^0 \to \ell^- \bar{\nu} \bar{X})},$$

☐ SM predicts tiny value

SM predicts tiny value
$$\sqrt{a_{sl}^s} = (-0.0019 \pm 0.0003)\%$$

$$a_{sl}^{s} = \frac{A - A_{BG}}{F_{B_{s}^{0}}^{OSC}}$$

Detector-related asymmetries (Positive Kaons higher detection efficiency)

Raw asimmetry extracted by counting μD_s signal yields

Fraction of reconstructed μD_s decays from oscillated B_s^0 mesons

Semileptonic decays Results

$$a_{
m sl}^s = \left[-1.12 \pm 0.74 \, ({
m stat}) \pm 0.17 \, ({
m syst})
ight] \%,$$
 Phys. Rev. Lett. 110, 011801 (2013)

$$a_{\rm sl}^d = [0.68 \pm 0.45 \; {
m (stat.)} \pm 0.14 \; {
m (syst.)}]\%.$$
 Phys. Rev. D 86, 072009 (2012)

- New results consistent with standard model, also consistent with previous results
- overall combination still ~ 3σaway from SM

Hadron collisions HF pioneers.

☐ The heritage I:

- ✓ Bs mixing phenomenology and ~1000x improvement in $B_S \rightarrow \mu\mu$ limits ruled out plethora of BSM physics models.
- ✓ New resonant states, new decays, and precise CPV asymmetries provided useful inputs to understanding of the weak decays and the strong interaction.

☐ The heritage II:

- ✓ many original experimental and analysis techniques developed, pioneered, and established as industry standard.
- □ About 150 HF papers in 10 years. And counting....

Conclusions

☐Getting analyses finalized in full dataset and documenting analysis techniques in detail

□All nicely consistent with the SM

☐ Keep searching while focusing on measurements that are unique to Tevatron or systematics-limited.